Chapter 9

Paired Samples Tests and Confidence
Intervals

Chapter Objectives

e Carry out a paired t test for the difference between two population means.

e Compute and interpret a paired ¢t confidence interval for the difference between two population means.

e Carry out a signed rank test on paired samples for a difference between two population means.

e Carry out a sign test on paired samples for a difference between two population means.

e Decide which test (the ¢ test, signed rank test, or sign test) is more appropriate for a given set of
data.

Key Takeaways

e Paired samples arise when a variable is measured on the same occasions at two different locations.
They also arise when a variable is measured at the same sample locations for each of two time points.

e Paired samples require specialized hypothesis test and confidence interval procedures.

e The paired t test is a parametric paired samples test the difference between two population means
that requires that the differences are a sample from a normal population or the sample size is large.
A log transformation can make right skewed data more normal prior to conducting a ¢ test.

e The signed rank test is a nonparametric test for the difference between two population means that
doesn’t require a normality assumption or large sample size.

e The sign test is a nonparametric test for a population median difference that doesn’t require a
normality assumption or a large sample size.

9.1 Matched Pairs Study Designs

In Chapter 8, the samples used to carry out hypothesis tests and produce confidence intervals were selected
independently of each other, meaning that the population units selected for one sample had no relationship
to the ones selected for the other sample. It’s often advantageous, however, to deliberately select the
samples in such a way that each unit in the first sample is matched with one in the second sample. In
such matched pairs study designs, the matching is done according to characteristics that are related to
the variable that will be compared across the two samples so that within a matched pair, the two values
of that variable can be expected to be more similar than they would be for two unmatched units.

Often times, matched pairs studies involve measuring the variable of interest twice on each of several
units, once under one condition and a second time under a different condition. In this case the same units
comprise the two samples, but they’re measured under different conditions. This is illustrated in the next
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example, which also highlights the difference between matched pairs study designs and the independent
samples designs of Chapter 8.

Example 9.1: Matched Pairs Studies

Dredging a waterway refers to the removal of sediment from its bottom. Waterways are dredged for
several reasons, for example to deepen the passageway to a harbor, maintain water quality, improve
water circulation, or reduce flood risk by improving downstream flow.

Dredging can have positive environmental and ecological impacts. It can increase the nutrient
supply, produce a more even temperature, salinity, and dissolved oxygen distribution (by improving
circulation), improve fish spawning grounds or migratory pathways, and remove contaminants
residing in the sediments.

But it can have negative impacts too. It can alter sediment composition in ways that are
detrimental to benthic (bottom dwelling) organisms and can destroy their refuge, nutrition, and
breeding opportunities. It can also destroy aquatic life that relies on tranquil water.

Suppose we are to conduct an impact assessment study of the effects of dredging on a lagoon’s
sediment quality, but due to the lack of a suitably similar control lagoon, we can’t use a BACI
design. Instead we must use a before-after design. We’re now faced with two study design options:

Independent Samples Study Design: With this study design, a random sample of n sites on
the lagoon bottom would be taken and the sediment quality at each of those sites measured before
dredging is carried out. Then, after the dredging, another random sample of n different sites would
be taken, independently of the first sample, and the sediment quality measured at these sites after
the lagoon has been dredged.

Matched Pairs Study Design: With this study design, a random sample of n sites on the lagoon
bottom would be taken and the sediment quality measured at each of these sites before dredging is
carried out. Then, after the dredging, the sediment quality would be measured again at these same
n sites. In this study design, each site produces matched pair of before- and after-dredging sediment
quality observations.

In the last example, for the independent samples design, the procedures of Chapter 8 would be ap-
propriate. But for the matched pairs design, they wouldn’t because the two samples (before and after
dredging) aren’t selected independently of each other. For the matched pairs design one of the following
procedures, described in this chapter, should be used:

1. The paired t test
2. The sign test for paired samples
3. The signed rank test for paired samples

The first is a parametric test, requiring a normality assumption, but the second and third are nonparametric
tests, requiring no such assumptions.

Our goal in the lagoon study is to detect an effect of dredging on sediment quality if there is one.
Intuitively, it would seem that the matched pairs design would be better able to detect an effect, and it’s
generally true that matched pairs designs are more sensitive to such effects when they exist. But why? In
any lagoon bottom, sediment quality will vary from site to site due to variation in so-called extraneous
variables (variables other than dredging status that affect sediment quality) such as topography, proximity
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to stream inlets, proximity to human activity, and so on. If the before- and after-dredging sites weren’t
the same, any observed difference in sediment quality across the two time periods would be a reflection
not only of the effect of dredging, but also of the net effect of differences in these extraneous variables
for the two sets of sites. But when the before- and after-dredging sites are the same, we can investigate
the site-specific changes in sediment quality, and because the extraneous variables remain constant at each
site, they don’t contribute to the observed difference in sediment quality across the two time periods. In
this way, the matched pairs study design controls for the effects of extraneous variables that vary from site
to site, making it easier to detect a dredging effect if there is one.

Hypothesis tests for matched pairs studies are carried out by simply calculating a difference for each
pair and then performing a one-sample test using the differences. The next two examples illustrate.

Example 9.2: Pairwise Differences in Matched Pairs Studies

The matched pairs, before-after study design of Example 9.1 was used to assess the impact of
dredging on sediment composition in the Patos Lagoon region of the Rio Grande Harbor on the
southern coast of Brazil [2]. The percent clay was measured in sediment at n = 8 sites in the lagoon
the summer before it was dredged and again at the same eight sites the spring after dredging. Fig.
9.1 shows the location of the study region and the eight sample sites within it.

Location of Dredging Locations of Sampling Stations in
Impact Assessment Study Dredging Impact Assessment Study

Rio Grande
Harbor

Brazil

R

Rio Grande
Harbor

Atlantic Ocean

Figure 9.1: Location of the Rio Grande Harbor, Brazil (left), and the eight sites from which sediment
samples were taken before and after dredging (right).

The table below shows the resulting data, including the differences for the eight sites. A negative
difference means the clay composition decreased at that site.

Clay Percent

Site Before Dredging After Dredging Difference

1 61.3 53.8 -7.5
2 60.8 38.4 -22.4
3 49.4 54.1 4.7
4 56.2 95.7 -0.5
) 58.6 42.0 -16.6
6 57.1 48.1 -9.0
7 95.4 48.7 -6.7
8 48.3 19.3 -29.0
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To decide if there was a statistically significant change in percent clay composition, a one-sample
hypothesis test will be carried out on the eight differences. The choice of which test to use will
depend on the shape of the distribution of the differences.

Example 9.3: Pairwise Differences in Matched Pairs Studies

The Lake Michigan Mass Balance Study is a U.S. Environmental Protection Agency (EPA) study for
monitoring polychlorinated biphenyls (PCBs), mercury, atrazine, and phosphorus in Lake Michigan,
and to identify the sediment, air, land, and water pathways by which these pollutants enter the lake.
According to the EPA’s website:

Certain toxic substances accumulate or persist in the Great Lakes because, unlike rivers
that are constantly flushed with cleaner waters, lakes act as ”pollutant sinks”. A drop
of water entering Lake Michigan today will remain in Lake Michigan for an average of
100 years before it either evaporates or washes into Lake Huron through the Straits of
Mackinac. For a particle of soil, the retention time is much, much longer. Unless a
pollutant naturally breaks down into harmless components, it persists as a threat to the
environment.

As part of the study, sediment cores were sampled at each of four monitoring stations in the lake, the
locations of which are shown in Fig. 9.2, and a number of variables were measured at two different
depths from the top of the core.

Locations of Sampling Stations in
Lake Michigan Sediment Study

Y

Figure 9.2: Locations of sediment sampling stations in the Lake Michigan Mass Balance study.

The table below shows total phosphorus (TP) measurements (mg/g) for the two sediment core
depths, 11.5 cm and 33.0 cm. Also shown are the water depths at the stations and the differences
between shallow and deep TP concentrations.
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Total Phosphorus

Depth of 11.5 cm 33.0 cm
Station Water (m) Core Depth Core Depth Difference
1 172 1.20 0.99 0.21
2 279 1.08 0.80 0.28
3 58 0.75 0.56 0.19
4 52 0.67 0.60 0.07

In Example 9.9, we’ll use the four differences to decide if there’s statistically significant evidence
that the TP concentrations differ for the two sediment depths.

In environmental science, matched pairs studies usually involve pairing observations either by their
spatial locations or according to the times at which they were made. The last two examples both used the
first approach, with two observations made at each of several locations. In practice, the spatial locations
would be selected using one of the random sampling schemes described in Chapter 2. In the next example,
pairing is done with respect to time, and two observations are made on each of several occasions. In practice,
the set of sampling occasions is often a systematic sample, for example consisting of paired observations
made every 5th day.

Regardless of whether pairs correspond to spatial locations or points in time, the central idea is that
observations made on matched spatial or temporal units are affected equally by extraneous variables.

Example 9.4: Pairwise Differences in Matched Pairs Studies

In an impact assessment study of the effects of forest clear-cutting on water quality in an adjacent
stream, several hydrological variables were measured on each of 11 days upstream and downstream
of a newly-completed clear-cutting operation in Southwest Ireland [14]. The table below shows the
nitrate concentrations (mg/L) and their differences.

Nitrate Concentration

Date Upstream Downstream Difference
08/15/97 1147.4 995.3 152.1
08/18/97 1412.2 1303.6 108.6
08/31/97 1613.9 1923.3 -309.4
09/18/97 763.3 747.8 15.5
11/04/97 1031.4 1082.9 -51.5
11/07/97 1093.2 1938.7 -845.5
02/27/98 390.8 338.8 52.0
07/14/98 909.8 776.8 133.0
08/25/98 1033.0 676.8 356.2
09/30/98 897.5 1291.0 -393.5
10/29/98 2314.0 1232.9 1081.1

In this study, a pair corresponds to upstream and downstream measurements made on the same
day. The idea is that day-to-day fluctuations in extraneous factors that are related to nitrate
concentrations, such as rainfall events, temperature shifts, and seasonal streamflow patterns, affect
upstream and downstream concentrations equally. Thus these extraneous factors can be controlled
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for by taking measurements in pairs, each pair corresponding to a particular day.

In Problem 9.16, the 11 differences are used to test the hypothesis that the clear-cutting operation
had an effect on the nitrate concentrations.

9.2 The Paired t Test

9.2.1 Introduction and Notation

We’ll denote observations from a matched pairs study by X, Xo,..., X, and Y1,Ys, ..., Y}, where each
X, is paired with the corresponding Y;. Thus X; and Y7 are a pair, X3 and Y5 are a pair, and so on. We’ll
assume that the X;’s are a random sample from a population whose mean is u, and that the Y;’s are a
random sample from a population whose mean is j,, but now the two samples aren’t independent. As
before, we’ll want to test the null hypothesis

Ho:pz—py =0
that there’s no difference between the X and Y population means.
For the paired t test, we’ll need some new notation. We’ll denote the sample of n pairwise differences
by D1, D2, ..., Dy, that is,
Dy = Xi1—"
Dy = Xo—-Ys

D, = X,-Y,.

These are the values shown in the rightmost columns of data in Examples 9.2, 9.3, and 9.4. We’ll think of
D1, Dy, ..., D, as a single random sample from a (hypothetical) population of differences, whose mean
will be denoted by pq4, that is

g = The mean of the population of differences.

Example 9.5: Population of Differences

In the Lake Michigan Mass Balance study of Example 9.3, we can think of the entire lake bottom
as the population and specific locations as the population units. At each location, there’s a value
for the difference between the TP concentrations at the shallow (11.5 cm) and deep (33.0 cm)
sediment depths, and these difference values collectively comprise the population of differences. The
mean pg is the average of the differences over the entire lake bottom, and the sample of differences
D1, Dy, D3, Dy consists of the four differences shown in the rightmost column of the data table in
Example 9.3.

The sample mean and sample mean standard deviation of the differences will be denoted by
D and Sy, respectively,

D = The sample mean of D1, Do,..., D,

and
Sq = The sample standard deviation of Dy, Ds,..., D,.

The next fact says that the mean of the differences is the difference between the means.
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Fact 9.1 For any two data sets X1, Xo,..., X, and Y7,Ys,...,Y, (with equal sample sizes),
D= X-Y,

where X and Y are the means of the X and Y samples.

This is easy to verify using the properties of summations given in the appendix or by following the next
example.

Example 9.6: Mean of the Sample of Differences

For the Lake Michigan Mass Balance study, letting X denote the the shallow (11.5 cm) TP sample
and Y the deep (33.0 cm) one, the data from Example 9.3 give

X = 0.9250, Y = 0.7375, and D = 0.1875

and so, as guaranteed by Fact 9.1, D = X — Y. It’s easy to see why by rearranging the data during
the computations:

_ 1
X -V = J(1.20+1.08+0.75+0.67) — ~(0.99 + 0.80 + 0.56 + 0.60)

1
4

1
= ;[ (1.20-0.99) + (1.08 — 0.80) + (0.75 — 0.56) + (0.67 — 0.60) |

1
= 7(0:21+0.28+0.19 +0.07)

= D.

(Bold font is used merely to highlight the data rearrangement).

The previous fact has a counterpart for population means.

Fact 9.2 Suppose X and Y are random variables drawn from any two populations whose means
are fi; and p,,. Then the difference D = X —Y can be considered to be a random variable drawn
from a population whose mean pg is

fd = fz — fy- (9.1)

This is actually a direct consequence of Facts 4.2 and 5.3 from Chapters 4 and 5 regarding means of linear
functions and sums of random variables.

Example 9.7: Mean of the Population of Differences

In the Lake Michigan Mass Balance study, the X and Y populations are the shallow (11.5 cm) and
deep (33.0 cm) sediment layers, respectively. If p, is the mean TP concentration over the entire lake
bottom for the shallow layer and i, is the mean for the deeper layer, then (9.1) says that the mean
value of the difference in TP concentrations over the lake bottom, pg4, is the difference between the
mean concentrations for the two layers, u, and p,.
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9.2.2 The Paired t Test Procedure

It follows from the Fact 9.2 that any hypothesis about the difference between the X and Y population
means ji; and j, can be reformulated as a hypothesis about p4:

Hypothesis Equivalent

About p, — p, Hypothesis About pg
Null Hy:pg—py=0 Hy:pg=0
Hy:pg—py>0 Hy:pg>0
Alternatives  Hg @ fiz — fty <0 H,:pg <0
Hy: s —py 0 Hy:pa #0

For the paired t test, we're free to choose whichever of these equivalent formulations of the null and
alternative hypotheses we want to use. The test is actually just a one-sample t test (Chapter 7) for the
mean g of the difference population using the sample of differences D1, Do, ..., D,.

The paired t test statistic, denoted t is defined as follows.

Paired t Test Statistic:

where

The sample mean difference D is an estimate of the true (unknown) population mean difference pg4, so if
the null hypothesis was true, and pg equal to zero, we’'d expect D to be approximately equal to zero too,
in which case t would as well. But if the alternative hypothesis was true, and g4 different from zero, we’d
expect D to be different from zero in the direction specified by the alternative, in which case ¢ would differ
from zero in that same direction. Therefore,

1. Large positive values of t provide evidence in favor of H, : ug > 0 (or equivalently H, :

ez — (Vg = U):
2. Large negative values of ¢t provide evidence in favor of H, : ug < 0 (or equivalently H, :
fo — fy < 0).

3. Both large positive and large negative values of ¢ provide evidence in favor of H, : ug # 0 (or
equivalently H, : pig — pty # 0).

. J

Because its denominator S5 is the estimated standard error of D, the observed value of ¢ indicates (ap-
proximately) how many standard errors D is away from zero, and in what direction (positive or negative).

To decide if an observed t value provides statistically significant evidence in favor of the alternative
hypothesis, we’ll need to know its sampling distribution under the null. But ¢ is just a one-sample ¢ test
statistic using the sample of differences, so from Chapter 7, we have the following.

Sampling Distribution of ¢t Under Hy: Suppose X1, Xo,..., X, and Y7, Ys,..., Y, are observa-
tions from a matched pairs study, and let Dy, Do, ..., D, denote the differences. Also let g denote
the population mean difference, and suppose either the population of differences is normal or n is
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large. Then when
Hy:pg = 0 (or equivalently Ho : ftz — pty = 0)

is true,
t ~ t(n—1).

Because values of ¢ that differ from zero in the direction specified by the alternative hypothesis count as
evidence in favor of that hypothesis, p-values (and critical values for the rejection region approach) are
obtained from the corresponding tail (or tails) of the ¢(n — 1) distribution, as summarized below.

Paired t Test for pgqg

Assumptions: z1,x9,...,x, and y1,¥2, ..., Yy, are two random samples that are
paired and either the differences dy, do, ..., d, form a single sample from a normal
population or n is large.

Null hypothesis: Hg: pug = 0.

d

Test statistic value: t = PN

Decision rule: Reject Hj if p-value < « or t is in rejection region.

P-value = area under

Alternative t-distribution Rejection region =
hypothesis with n — 1 d.f.: t values such that:*
Hy:pug>0 to the right of ¢ t>tan-1

Hy:pg <0 to the left of ¢ t < —tan-1

Hy:pg#0 to the left of — || and right of |¢| t>th/05-1 08t < —ty/2n_1

* tan—1 is the 100(1 — «)th percentile of the ¢ distribution with n — 1 d.f.

9.2.3 Carrying Out the Paired t Test

We’ll now look at two examples illustrating the paired ¢ test procedure, the first showing how it’s used to
decide if dredging impacted the Brazilian lagoon’s sediment quality (Example 9.2) and the second showing
how it’s used to compare phosphorus concentrations at two sediment depths on Lake Michigan’s bottom
(Example 9.7).

Example 9.8: Paired t Test

For the study of the impact of dredging on the Brazilian lagoon’s sediment quality (Examples 9.1
and 9.2), we want to decide if there was any change in the sediment’s clay percentage. Thus we’ll
test the hypotheses

Hy:pg = 0 (or equivalently Hg : ptg — pty = 0)
Hy:pg # 0 (or equivalently Hg : pg — pty # 0)
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where 114 is the true mean difference in the lagoon’s clay percentage (after dredging minus before).

A normal probability plot and a boxplot of the differences (from Example 9.2) are shown below.

Normal Probability Plot of Differences Boxplot of Differences

o — . w0 - -

Sample Value
1

1

1

|
|
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Figure 9.3: Normal probability plot (left) and boxplot (right) of the eight differences in sediment
clay percents in the lagoon at the Rio Grande Harbor, Brazil.

The normal probability plot indicates that the normality assumption required for the paired t test
appears to be met. The boxplot lies almost entirely below zero, suggesting a decrease in the clay
percentage.

The summary statistics for the n = 8 differences (clay percentage after dredging minus before) are

D = —-109
Sq = 11.2

The estimated standard error of D is

so the observed test statistic value is

_ —109-0
3.96
= —=2.75.
Thus the sample mean difference, D = —10.9, is about 2.75 standard errors below zero.

From the t distribution table, using n — 1 = 7 degrees of freedom, the p-value is 2(0.0143) = 0.0286.
Using a level of significance o = 0.05, we reject the null hypothesis and conclude that the observed
decrease in clay percentage is statistically significant.
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Example 9.9: Paired t Test

For the study of total phosphorus (TP) at two sediment depths in Lake Michigan’s bottom (Examples
9.3, 9.5, 9.6, and 9.7), we want to decide if there’s any difference between shallow (11.5 cm) and
deep (33.0 cm) TP concentrations. Thus the hypotheses are

Hy:pg = 0 (or equivalently Hy : p1z — pty = 0)
Hy:pg # 0 (or equivalently Hy : p1z — 1y 7 0)

where pig is the true mean difference in TP concentrations (shallow minus deep sediment depths).

A normal probability plot of the differences is below.

Normal Probability Plot of Differences
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Figure 9.4: Normal probability plot of the differences in total phosphorus concentrations in Lake
Michigan sediment.

Although it’s difficult to assess normality with such a small sample size, the plot doesn’t give any
strong indication of non-normality, so we’ll proceed with the paired ¢ test.

The summary statistics for the n = 4 differences (shallow minus deep) are

D = 0.19
Sq = 0.09.
The estimated standard error of D is
0.09
Sp = — = 0.045,
V4

so the observed test statistic value is

0.19-0

0.045
= 4.22.

From the ¢ distribution table, using n — 1 = 3 degrees of freedom, the p-value is 2(0.0122) = 0.0244,
so at the level of significance a = 0.05, we reject the null hypothesis. There’s statistically significant
evidence that the TP concentrations at the shallow sediment depth are higher than at the deeper
depth.
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9.2.4 Some Comments on the Sensitivity of Matched Pairs Designs

As we saw in Example 9.1, when faced with a decision between using an independent samples study design
or a matched pairs design, the matched pairs design is usually preferred because it allows us to control for
the effects of extraneous variables that would otherwise contribute to random variation between individuals
across the two samples.

We’ll can compare the test statistics for the two study designs to see directly how the matched pairs
design leads to a test that’s more sensitive to a difference or effect if there is one. For the independent
samples design (with equal sample sizes), the two-sample ¢ test statistic (Chapter 8) is

X-Y
t = .

involves Sy, which reflects variation in the pairwise differences, but the two-sample ¢ denominator (with

2 2
PR I S R
X-v n n \/ﬁ .

involves S, and Sy, which reflect variation in the X and Y observations.

If, in a matched pairs study, extraneous variables that contribute to variation in the X and Y obser-
vations affect both observations in a pair equally, then their effects will cancel out when we compute the
pairwise differences. As a result, those extraneous variables don’t contribute to variation in the differences.
In this case, the denominator of the paired ¢ statistic will be smaller than that of the two-sample ¢ statistic,
and so for a given observed difference X — Y, the paired ¢ statistic will tend to be farther away from zero,
and result in a smaller p-value, than the two-sample ¢ statistic. The next example illustrates these ideas.

equal sample sizes)

Example 9.10: Power of the Paired t Test

Consider again the study of total phosphorus (TP) in Lake Michigan sediment (Examples 9.3, 9.5,
9.6, 9.7, and 9.9). The left plot below shows the TP concentrations for the two sediment depths
(11.5 cm and 33 cm). The right plot shows their differences.
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Differences in Total Phosphorus
(Shallow minus Deep) in Sediment at 4
Monitoring Stations in Lake Michigan

Total Phosphorus in Sediment at 4
Monitoring Stations in Lake Michigan
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Figure 9.5: TP concentrations at shallow (11.5 cm) and deep (33.0 cm) sediment depths for each of
four monitoring stations in Lake Michigan (left); the pairwise differences (right). In both plots, the
data have been projected onto the right margin to gauge their variation.

The left plot reveals the substantial station-to-station variation in both the shallow and deep TP
observations. Much of this variation is due to extraneous variables that differ from one station to
the next, such as proximity to the shore and stream inlets, proximity to human activity such as
agriculture, lake depth, and sediment composition. There’s much less variation, however, in the
differences shown in the right plot because the effects of these extraneous variables cancel out when
we compute the differences.

The standard deviation of the differences (from Example 9.9) is
Sq = 0.09
which is much smaller than the standard deviations of the shallow and deep TP samples,
S, = 0.25 and Sy = 0.20.

The result is that the paired ¢ statistic, t = 4.22 (from Example 9.9), is substantially farther away
from zero than the value we’d get for the two-sample t statistic, t = 1.16.

Comment: P-values for the two-sample ¢ and paired t tests are obtained from different ¢ distributions
(they have different degrees of freedom), so a direct comparison of the test statistic values isn’t entirely
valid. But it’s usually the case that matched pairs studies lead to smaller p-values.

9.3 Paired t Confidence Intervals

In the impact assessment study of dredging the Rio Grande Harbor (Examples 9.1, 9.2, and 9.8), we may
want an estimate of how much the clay percentage in the sediment decreased. The point estimate of
such an effect size y, (or equivalently p, — 11,) in a matched pairs study is D (or equivalently X —Y). A
100(1 — a)% paired t confidence interval for p, (or equivalently p, — 1) attaches a margin of error
to the point estimate.
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Paired t Confidence Interval for pg (or py — py ): Suppose Xi, Xo,..., X, and Y1, Y5, ...,
Y,, are observations from a matched pairs study and Dy, Do, ..., D,, are the differences. Let u, and
fy denote the X and Y population means and j4 the population mean difference, and suppose
either the population of differences is normal or n is large.

Then a 100(1 — a)% paired t confidence interval for pg (or pe — py) is
D+ ta/2,n—1 SD7 (93)

where g
__ Pd
Sp = Nk

\.

We can be 100(1 — a)% confident that ;14 (or equivalently g, — p,) will be contained in the confidence
interval.
The margin of error in the paired ¢ confidence interval is

Margin of Error: For the paired ¢ confidence interval (9.3), the margin of error is

Sd
ta/?,n—l %7

Margin of Error = t4/3,-15p =

The margin of error measures the degree of precision in the estimate D of the true effect size pug. A smaller
margin of error means a more precise estimate.

Example 9.11: Paired t Confidence Interval

For the impact assessment study of dredging the Rio Grande Harbor (Examples 9.1, 9.2, and 9.8),
the summary statistics for the n = 8 differences (clay percentage after dredging minus before) are

D = —-109
Sqg = 11.2

so we estimate that on average over the lagoon bottom, the clay percentage in the sediment
decreased by 10.9 points.

The estimated standard error is

Sp = Té = 3.96,

so a 95% paired t confidence interval for the true (unknown) mean change in clay percentage, fiq, is

Dttypn 1S5 = —10.9+2.36(3.96)
= -10.9 + 9.35
(—20.25, —1.55).

The ¢ critical value tp.0257 = 2.36 was obtained from a ¢ distribution table with n —1 = 7 degrees of
freedom. Thus our estimate of the average decrease might be off the mark by up to 9.35 percentage
points (the margin of error), and we can be 95% confident that the true mean decrease is between
20.25 and 1.55 points. Notice that this interval lies entirely below zero, which is consistent with the
paired t test result of Example 9.8, where Hy : pg = 0 was rejected.
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Comment: For a given confidence level, the confidence interval for p4 (or p; — pyy) based on a matched
pairs study will typically be narrower than one based on an independent samples study. The reason is
that, as discusses in Subsection 9.2.4, the standard deviation S, of the differences in a matched pairs study
will usually be small relative to the standard deviations S, and S, in an independent samples study, so
the margin of error for a paired ¢ interval will usually be be smaller than that of a two-sample t interval
(even though the t critical values use different degrees of freedom).

9.4 Dealing With Non-Normal Data: Transformations and Nonpara-
metric Procedures

The paired ¢ test rests on an assumption that the sample of differences was drawn from a normal distribution
(it’s a parametric test). If this assumption isn’t met (and n isn’t large), there are two main courses of
action:

1. Transform the data to normality: It turns out that if two random variables X and Y both follow
normal distributions, their difference X — Y will also follow a normal distribution. Therefore the
normality assumption for the differences in a matched pairs study will be met if it’s met for both the
X and Y samples. If the assumption isn’t met for the differences, it’s sometimes possible to transform
both the X and Y samples, for example by taking their logs or using another transformation in the
Ladder of Powers, so that the transformed values in both samples are more normally distributed.
Then the paired t test can be carried out using the transformed data.

2. Carry out a nonparametric test: We can carry out a nonparametric test that doesn’t rely on an
assumption of normality of the differences. The signed rank test and the sign test for paired samples
described in the next two sections are nonparametric alternatives to the paired ¢ test.

9.5 The Signed Rank Test for Paired Samples

9.5.1 Introduction

The signed rank test for paired samples (also called the Wilcoxon signed rank test), like the paired
t test, is a test for the difference between two population means p, and g, in a matched pairs study. But
unlike it doesn’t require the normality assumption for the differences, so it’s a nonparametric alternative
to the paired ¢ test.

9.5.2 The Signed Rank Test Procedure

Consider observations from a matched pairs study, X1, Xs,..., X, and Y7, Ys, ..., Y,, from two populations
whose means are p, and p,. We'll again denote the differences by D1, Da, ..., D, and treat these as a
single sample from a population of differences whose mean is py. We assume the difference population is
continuous and has a symmetric shape (left and right halves are mirror images), but not necessarily that
it’s normal.

As for the paired t test, we’ll test the null hypothesis

Hy:pg =0 (or equivalently Hy : pig — jty = 0)
that there’s no difference between the population means, versus one of the alternatives

1. Hy:pug >0 (or equivalently Ho : ptg — 1y > 0) (upper-tailed test)
2. Hy: g <0 (or equivalently Hy : p1z — iy < 0) (lower-tailed test)
3. Hy:pug #0 (or equivalently Ho : ptz — piy # 0) (two-tailed test)
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Comment: Because the population of differences is assumed to have a symmetric shape, its mean will
equal its median. Thus the null hypothesis could be stated in terms of the true (unknown) median of the

population of differences, fiq, as
Ho:jig = 0,

In this case, we’d state the alternative hypothesis in terms of the median too.

In the sample, some of the observed differences will be positive and some negative, and each of them
will lie a certain distance above or below zero. The signed rank test statistic, denoted W, test statistic
is obtained by taking the absolute values of the differences, sorting and ranking these, and then summing
the ranks of the differences that were originally positive.

Signed Rank Test Statistic:

1. If any of the differences D1, Do, ..., D, equal zero, discard them prior to computing W, and
reduce the sample size n by the number of discarded D;’s.

2. Take absolute values of the remaining differences, keeping track of which ones were originally
positive.

3. Sort the absolute differences and rank them from smallest to largest. If two or more are tied,
assign to each of them the average of the ranks they would’ve been assigned if they hadn’t
been tied.

4. Sum the ranks of the absolute differences that were originally positive. This gives the test
statistic:
W™ = Sum of the ranks of the | D; |’s for which D; is positive.

Example 9.12: Signed Rank Test Statistic

In a study of the particulate-bound dry deposition of atmospheric mercury (Hg) in the state of
Indiana, a manual sampling and analysis method was used to measure ground-level atmospheric
Hg [12]. The method required holding the air samples for up to 120 h (five days) before analyzing
them at a laboratory.

To ensure that the long holding time wouldn’t affect the quality of the measurements, a separate
quality assurance study was carried out. In this study, air sampling devices were placed in pairs 10
miles from the laboratory. For each pair of sampled air specimens, one was held for 4 hours and
the other for 120 hours before being analyzed in the lab.

The table below gives the particulate-bound Hg measurements (pg/m?) for each of the 10 pairs
collected as well as their differences (long holding time minus short).
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Particulate-Bound Hg

Air Sample Long Short
Pair Holding Time Holding Time Difference
1 4.27 1.33 2.94
2 2.77 3.43 -0.66
3 1.50 1.29 0.21
4 5.70 6.26 -0.56
5 3.80 11.99 -8.19
6 5.64 1.88 3.76
7 3.67 14.58 -10.91
8 0.78 0.54 0.24
9 3.92 3.69 0.23
10 1.85 1.61 0.24

A normal probability plot of the differences is below.

Normal Probability Plot of Differences

10
1

Sample Value

T T T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 15

Theoretical Z Value

Figure 9.6: Normal probability plot of the differences in Hg measurements for two holding times.

The backward ”S” pattern in the plot suggests a symmetric but "heavy tailed”, non-normal
distribution for the differences, so the researchers carried out a signed rank test.

The hypotheses are

Hy:pg = 0 (or equivalently Ho : piz — fty = 0)
Hy:pg # 0 (or equivalently Ho : piz — fty # 0)

where g is the true (unknown) mean difference in Hg measurements (long holding time minus
short) (and p, and g, are the true means after long and short holding times, respectively).

To compute the test statistic, we first take absolute values of the differences, keeping track of which
ones were originally positive and which were negative, then we rank these from smallest (rank = 1)
up to largest (rank = n). If two or more observations are tied, they’re each assigned the average of
the ranks they would’ve been assigned if they hadn’t been tied.
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”_»

Letting a ”+” sign denote a positive difference and a sign a negative one, the sorted and ranked

absolute differences are:

Sign | + + o+ o+ - - 4+ o+ - -
|Difference| || 0.21 0.23 0.24 0.24 0.56 0.66 2.94 3.76 8.19 10.91
Rank 1 2 3.5 3.5 ) 6 7 8 9 10

The test statistic, denoted W, is the sum of the ranks for the (originally) positive absolute differ-
ences,

w+ 1+2+35+35+7+8

25.

We'll finish the hypothesis test in Example 9.13.

If the null hypothesis was true, the difference distribution would be centered on zero, and about half of
the differences in the sample would be positive and the other half negative. Furthermore, if the difference
population was symmetric, the absolute values of the positive and negative sample differences would be
about the same, and so they’d be ”evenly intermingled” when sorted. This can be seen in the bottom of
the left plot of Fig. 9.7. It can be shown that in this case, W+ will approximately equal n(n + 1) /4.

But if H, : ug > 0 was true, likely more than half of the differences in the sample would be positive, and
the positive differences would tend to be larger in absolute value than the negative ones when sorted. This
can be seen in the bottom of the right plot of Fig. 9.7. In this case, W would be larger than n(n + 1)/4.

If Hy : pug < 0 was true, fewer than half of the differences in the sample would be positive, and the
positive differences would tend to be smaller in absolute value than the negative ones when sorted. In this
case, W would be less than n(n + 1)/4.

Symmetic Difierence Population and
Random Sample when Hy: ip =0is True

Symmetic Diference Population and
Random Sample when H,: iy >0 True

Diferences: X ' [ ‘ »

'
Difrences; K ‘ ‘e ‘ .

'
AsoldeVelie: 1 vu e Vi
T T

Raks 4 o

'
Asoide Ve } 4 wa y ‘e ‘ .
T T T T

Rak= |

! é

Figure 9.7: A symmetric difference population and random sample from that population. Positive difference
values in the sample are depicted as blue squares and negative ones as red diamonds. Their absolute values
are shown at the bottom. In the left plot, Hy : g = 0 is true so the distribution is centered on zero. In
the right plot, H, : g > 0 is true so the distribution is centered to the right of zero.

Comment: The signed rank test statistic reflects both how many of the differences are positive as well as
how far above zero the positive differences are (relative to how far below zero the negative ones are).
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1. Large values of W™ (larger than n(n + 1)/4) provide evidence in favor of Hy, : pg > 0 (or
equivalently Hg : pig — fy > 0).

2. Small values of W7 (smaller than n(n + 1)/4) provide evidence in favor of H, : g < 0 (or
equivalently Hg : iz — 1y < 0).

3. Both large and small values of W (larger or smaller than n(n + 1)/4) provide evidence in
favor of H, : g # 0 (or equivalently Hy : py — 1y # 0).

To decide if an observed value of W™ provides statistically significant evidence in support of the alter-
native hypothesis, we’ll need to know its sampling distribution under the null hypothesis.

Sampling Distribution of W+ Under Hy: Suppose X1, Xo,..., X, and Y1, Y>, ..., Y, are paired
samples from populations whose means are p, and p,. Consider the differences D1, Ds,..., D, to
be a single random sample from a population of differences whose mean is 4, and suppose that the
population of differences is continuous and has a symmetric shape.

Then when
Hy:pg = 0 (or equivalently Ho : ptz — py = 0)

is true, W, follows a discrete probability distribution called the Wilcoxon signed rank distri-
bution, which has one parameter, n. We write this as

W+ ~ WilcoxonSR/(n).

The Wilcozon signed rank distribution is symmetric and approximately bell-shaped. The distribution is
shown below for a sample size n = 5.

Sampling Distribution of W*
when n =5 and Hg is True
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Figure 9.8: Sampling distribution of the signed rank test statistic W when n = 5 and Hj is true.

The mean and standard error (standard deviation) of the Wilcoxon signed rank distribution, denoted

U+ and o+, are

Mean and Standard Error of the Sampling Distribution of W+: The mean p,+ and
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standard error o,,+ of the Wilcoxon signed rank distribution are
n(n +1
n(n+1)2n+1
S coEaiTEs)) o5

The mean p,,+ is the value we’d expect to get for W™, on average, when the differences in a matched
pairs study are equally likely to fall a given distance above or below zero (that is, when the null hypothesis is
true). Thus if the null hypothesis was true, we’d expect our test statistic to be roughly equal to n(n+1)/4.
Values of W in the extreme tail of the distribution (in the direction specified by the alternative hypothesis)
provide evidence against the null, so the rejection region is comprised of W values in the the extreme
100a% of the distribution, and the p-value is the tail probability outward from the observed W value.

Details about the sampling distribution of W™ will be given in Subsection 9.5.5. For now, p-values and
critical values (for the rejection region approach) will be obtained from a Wilcoxon signed rank distribution
table.

The signed rank test procedure for paired samples is summarized in the following table.

Paired Samples Signed Rank Test for g

Assumptions: z1,xo,...,x, and y1,¥2, ..., Yy, are two random samples that are
paired and the differences dy, do, ..., d, form a single sample from a continuous
population whose distribution is symmetric.

Null hypothesis: Hy : pug = 0.
Test statistic value: w™ = sum of the ranks of | d; |’s for which d; > 0.

Decision rule: Reject Hy if p-value < a or w™ is in rejection region.

Alternative P-value = tail probability of the Rejection region =
hypothesis W distribution under Hy: * w™ values such that: **
H,:pg >0 to the right of (and including) w™ wt > we
Hy:pg <0 to the left of (and including) w™ wt <wj,
Hy,:pg#0 2 - (the smaller of the tail prob- wt < W} a5 O

abilities to the right of (and wh > Wy 9,

including) w™ and to the left
of (and including) w™)

* For a given sample size (after deleting the zero-valued d;’s) n, in Table B6, the
p-value can be taken to be less than the smallest o for which Hy would be re-
jected using the rejection region approach.

** For a given level of significance o and sample size (after deleting the zero-valued
d;’s) m, in Table B6 the upper tail critical value wq ,, is the large W entry associat-
ed with row n, column «. The lower tail critical value wy, ,, is the small W entry.
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9.5.3 Carrying Out the Signed Rank Test for Paired Samples

In the next example we’ll complete the hypothesis test started in Example 9.12.

Example 9.13: Signed Rank Test

In the study of the effect of holding period on particulate-bound mercury (Hg) in air samples
(Example 9.12), the sample size is n = 10.

The mean of the W distribution under the null hypothesis is n(n + 1)/4 = 27.5, so the observed
value W+ = 25 (from Example 9.12) provides very little evidence that the long holding period affects
Hg measurements. The sampling distribution of W under the null is shown below along with the
critical values that determine the rejection region (left) and the p-value (right).

Sampling Distribution of W* Sampling Distribution of W*
when n =10 and Hy is True when n =10 and Hy is True
= z
3 o a 3
= 5—0.025 5—0.025 E
< <)
) Aﬂ Fﬁéh )
T T
0 5 |10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55
Reject ) ; Reject
! <—+> Failto RejectH, <1+> .
Ho Ho
w* w*

Figure 9.9: Sampling distribution of the signed rank test statistic W™ when n = 10 and Hj is true.
The critical values defining the rejection region are 8 and 47. The p-value is greater than 0.10.

Using a level of significance o = 0.05, the critical values for the two-tailed test, w? /2. A0 Wa /25,
from Table B6, are
wo 02510 = S and wo.025,10 = 47.

Thus the decision rule is

Reject Hy if WT <8 or WT >47
Fail to reject Hy if 8 < W' < 47

Since W = 25 isn’t in the rejection region, we fail to reject the null hypothesis. We conclude that
there’s no statistically significant evidence for any effect of holding time on Hg measurements. (The
exact p-value can’t be obtained from table B6, but it can be seen from the table to be greater than
2(0.05) = 0.10.)

Comment: One important scenario in which the differences are guaranteed to follow a continuous, sym-
metric distribution is if the X and Y populations are continuous and have the same shape, as stated by
the following fact.

Fact 9.3 Suppose X and Y are random variables drawn from any two continuous distributions that
have the same shape. Then the difference D = X —Y is a random variable that follows a continuous
distribution whose shape is symmetric.
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In practice, this means that we don’t have to check the assumption that the differences in a matched
pairs study follow a symmetric distribution if we’re fairly confident that the two variables X and Y follow
same-shaped distributions (with possibly different means).

9.5.4 'What if the Difference Population Isn’t Symmetric?

The signed ranks test requires that the differences in a matched pairs study follow a symmetric distribution.
It turns out, though, that we can still carry out the test even if the population of differences isn’t symmetric.
However, in this case it’s not testing whether the population mean difference jiq is zero (or that p, and p,
are equal). Rather, it’s testing hypotheses that can be stated in words as:

Hy : The population of differences has a distribution that’s symmetric about zero
H, : The population of differences has a distribution whose positive values are
farther from (or closer to) zero than its negative ones

Here’s more formally what’s meant by ”farther from zero” in the context of Hg measurements made
after the two holding times. Each time we measure the Hg in a matched pair of air samples, the difference
D is a random variable. It might be positive and it might be negative. There’s a probability that it will
be greater than 2.0 pg/m?, P(D > 2.0), and a probability it will be less than —2.0 pg/m?3, P(D < —2.0).
If the positive differences are ”farther from zero” than the negative ones, then we’d have

P(D>20) > P(D < —2.0).

The alternative hypothesis says that this inequality holds not just for 2.0 but for any specified difference
value. In other words, it says that the difference distribution has more probability to the right of whatever
positive value we specify than it has to the left of the negative of that value.

9.5.5 Some Comments on the Sampling Distribution of W+

For deeper understanding of the signed rank test, it helps to know how the sampling distribution of the test
statistics under the null hypothesis is determined. We’ll consider the case when n = 4 and the difference
population is symmetric.

When the null hypothesis is true, the difference population is symmetric about zero, so an observed
difference D; is just as likely to fall a given distance above zero as it is to fall that same distance below zero.
Thus when ranking the distances of the D;’s away from zero, each rank is equally likely to be associated
with a D; that’s positive or one that’s negative. In the table below, each ”4” is equally likely to be a 7+”
ora”—".

Sign + + + +

|Difference| || |D;| |Di| |D;| |D;]
Rank 1 2 3 4

In other words, when the null hypothesis is true, each of the possible sets of ranks for the positive differences,
listed below on the left side of the table, are equally likely.
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Ranks associated with

the positive D;’s Value of w™  Frequency of w™
none 0 1
1 1 1
2 2 1
1,2; 3 3 2
1,3 4 4 2
1,4; 2,3 5 2
1,2,3; 2,4 6 2
1,2,4; 3,4 7 2
1,3,4 8 1
2,3,4 9 1
1,2,3,4 10 1
16

Also shown are the values of W™ (sums of the ranks) and the frequency of each W+ value. There are a
total of 16 possible sets ranks for the positive D;’s, all of which are equally likely when the null hypothesis
is true, but W™ can only take the values 0,1,...,10. Thus the sampling distribution of W is

Value of wt ‘ 0
p(wh) | 15

3 4 5 6 7 8 9 10
7 2 2 2 1 T 1

2
16 16 16 16 16 16 16 16

1 2
T 1
16 16
and is shown in the probability histogram below.

Sampling Distribution of W*
when Hg is True

Probability
0.00 0.02 004 006 008 010 0.12
|

Figure 9.10: Sampling distribution of the signed ranks test statistic W' when n = 4 and Hj is true.

If the observed test statistic value was W = 7, the p-value for an upper tailed test would be the shaded
probability in Fig. 9.10, which, from the table above, is & + = + & + 1= = 0.3125.

Properties of the Sampling Distribution of W: Here are several properties of W7 that help us
interpret its value.
1. W takes its smallest possible value, zero, when none of the pairwise differences are positive.

2. W takes its largest possible value when all of the pairwise differences are positive. In this case, W+
isequalto 1+2+---+n=n(n+1)/2.

3. Recall that when the null hypothesis is true, the mean of the sampling distribution of W is

n(n+1)
ot = =
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This makes sense because it’s halfway between the two extreme W™ values corresponding to none of
the differences being positive and all of them being positive.

9.5.6 Large Sample Version of the Signed Rank Test

Notice from Figs. 9.8 and 9.9 that the sampling distribution of W when the null hypothesis is true is
symmetric and roughly bell-shaped. The plots below show that the distribution becomes more and more
bell-shaped as the sample size n gets bigger.

Sampling Distribution of Sampling Distribution of
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Figure 9.11: Sampling distribution of the signed rank test statistic W for various sample sizes n when
Hj is true.

It turns out that as n increases, the distribution gets closer and closer to a normal distribution, as stated
in the following fact.

Fact 9.4 Suppose X1, Xo,...,X,, and Y7, Ys,..., Y, are paired samples, and suppose the differences

Dy,Ds,...,D, can be considered to be a single random sample from a continuous, symmetric
population of differences whose mean is pg. Then if n is large (n > 15 suffices), and Hy : uqg = 0 is
true,

W+ ~ N(:uw"'a Jw"")a

approximately, where the mean p,+ and standard error o,,+ are given by (9.4) and (9.5).

It follows that if we standardize W™, the resulting random variable Z follows a standard normal
random distribution, that is,
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approximately.

When n is large, the appropriate test statistic for carrying out the signed rank test is the large sample
signed rank test statistic, denoted Z 1, given by the following.

Large Sample Signed Rank Test Statistic:

W+_
g (9.6)

Ot

where the mean pu,+ and standard error o,+ are given by (9.4) and (9.5).

\. .

P-values (and critical values for the rejection region approach) are obtained from the tails of the N(0, 1)
distribution in the direction specified by the alternative hypothesis.

Comment: As was the case for the large sample versions of the sign test of Chapter 7 and the rank sum
test of Chapter 8, most statistical software packages use a slightly more accurate continuity corrected
version of Z* when computing p-values for the large sample version of the signed rank test. The continuity
correction accounts for the fact that a continuous distribution (the standard normal) is approximating a
discrete one (the true distribution of Z1). Details about the continuity correction can be found in many
statistics textbooks, including [9)].

9.6 The Sign Test for Paired Samples

9.6.1 Introduction

The sign test for paired samples, like the signed rank test, is a nonparametric test for paired samples.
But unlike the signed rank test, not only does it not required a normality assumption for the differences,
it doesn’t even require that the difference population be symmetric.

The sign test for paired samples is simply an application of the one-sample sign test of Chapter 7 to
the sample of differences. Therefore, in contrast to the paired ¢ and signed rank tests, it tests for the value
of the median difference in the population, not the mean difference.

9.6.2 The Paired Samples Sign Test Procedure

Suppose we have paired samples X1, Xo,..., X, and Y7, Y5,...,Y, and that we can consider the differences
D1, Do, ..., D, to be a single random sample from any continuous population (not necessarily normal nor
even symmetric).
We’ll want to test the null hypothesis
Hy:pg =0

where [i4 is the true (unknown) median of the population of differences, versus one of the three alternatives
1. Hy: fig > 0 (upper-tailed test)
2.H,: g <0 (lower-tailed test)
3. Hy:fig # 0 (two-tailed test)
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The null hypothesis says that an observed difference has a 50/50 chance of being positive or negative. In
other words, it says that it’s just as likely that X will be bigger than Y as the other way around. The
alternative hypothesis says either that the difference is more likely to be positive or that it’s more likely
to be negative, and the direction for the alternative should reflect what we’re seeking evidence for in our
study.

If the null hypothesis was true then, we’d expect about half of the differences in our sample, or n/2 of
them, to be positive and the other half negative. The paired samples sign test statistic, denoted ST,
is just the number of observed differences that are positive.

Paired Samples Sign Test Statistic: For a sample of differences D1, Do, ..., Dy,
ST = Number of D;’s that are greater than zero.

If any of the D;’s equal zero, they’re discarded prior to computing S*, and the sample size n is
reduced by the number of discarded D;’s.

If substantially more than half or substantially less than half of the differences in the sample are positive,
that is, if ST differs substantially from n/2, it suggests that the true median difference fi differs from zero.
More precisely,

1. Large values of ST (larger than n/2) provide evidence in favor of Hy, : fig > 0.
2. Small values of ST (smaller than n/2) provide evidence in favor of Hy, : fig < 0.

3. Both large and small values of St (larger or smaller than n/2) provide evidence in favor of
Hg, : fig # 0.

The paired samples sign test procedure is summarized in the table below.
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Paired Samples Sign Test for g4

Assumptions: x1,29,...,x, and y1,y2, .. .,y, are two random samples that
are paired, and the differences dy, do, ..., d, form a single sample
from any continuous population.

Null hypothesis: Hg : jig = 0.
Test statistic value: s™ = number of positive d;’s.

Decision rule: Reject Hy if p-value < « or sT is in rejection region.

Alternative P-value = tail probability of the Rejection region =
hypothesis binomial(n, 0.5) distribution: * sT values such that: **
H,:jg>0 to the right of (and including) s* sT > sam

Hy:jig <0 to the left of (and including) s st <sh,

Hy:fig #0 2-(the smaller of the tail prob- st < St /2.m OF st > sq/0m

abilities to the right of (and
including) s* and to the left
of (and including) s™)

* For a given sample size (after deleting the zero-valued d;’s) n, the p-value for a
one-tailed test is obtained from a binomial(n, 0.5) distribution table by locating
the upper or lower tail probability (depending on the direction of H,) associated
with the observed S* value. For a two-tailed test, locate both the upper and
lower tail probabilities and multiply the smaller of these by two.

** For a given sample size (after deleting zero-valued d;’s) n and level of signifi-
cance , Sq,pn is obtained from a binomial(n, 0.5) distribution table by locating
the smallest s for which the upper tail probability is less than . s7, ,, is obtained
by locating the largest s for which the lower tail probability is less than «. For
the two-tailed test, s,/ , and s, /2,0 BTC defined analogously but with «/2 used in
place of a. In practice, due to the discreteness of the distribution, it’s not always
possible obtain a rejection region having exact probability c.

9.6.3 Carrying Out the Paired Samples Sign Test

Example 9.14: Sign Test for Paired Samples

In a study to compare two methods for estimating bird densities, a line transect method and a
quadrat-type area search method, densities of LeConte’s Sparrow (Ammodramus leconteii) were
estimated using both methods at each of 16 sites in Comanche County, Oklahoma [13]. The transect
method makes an adjustment to account for the fact that birds farther from the transect are less
likely to be observed. The quotes below, taken from the cited paper, describe the two methods more
fully.

A line transect is a line traveled by an observer, covering an area of unlimited width,
where all birds detected and their perpendicular distances from the line are recorded. A
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detection function is calculated based on the probability of detection at a given distance
from the line. Methods such as line transects and point counts that adjust through a
detection function for birds present but not observed are referred to as distance sampling.

An area search is a quadrat-type survey in which an observer moves about within a fixed
area and tries to detect all birds within that area.

The table below shows, for each of the 16 sites, the bird density estimates (birds per hectare) made
during the winter of 2002-2003. Also shown are the differences.

Bird Density Estimate

Site  Area Search Transect Method Difference

1 3.2 2.3 0.9
2 4.4 1.6 2.8
3 8.0 2.9 5.1
4 2.2 0.3 1.9
) 0.4 0.1 0.3
6 0.9 1.0 -0.1
7 2.3 1.0 1.3
8 2.8 2.9 -0.1
9 0.3 0.2 0.1
10 0.6 0.2 0.4
11 0.5 0.2 0.3
12 2.3 1.6 0.7
13 2.7 0.4 2.3
14 0.7 0.6 0.1
15 4.1 0.8 3.3
16 2.0 0.3 1.7

A normal probability plot and a histogram of the differences are below.

Normal Probability Plot of Differences

Sample Value

Theoretical Z Value

Frequency

Histogram of Differences

Difference

Figure 9.12: Normal probability plot and histogram of the differences in LeConte’s Sparrow density

estimates.

The plots indicate that the differences follow a right skewed distribution, and since n = 16 isn’t
large a paired ¢ test wouldn’t be appropriate. Instead, the researchers used a sign test for paired
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samples. The hypotheses are

H()I[Ld =0
Hy : g 7£ 0

where [ig is the true (unknown) median difference between estimates made using the two methods
(area search minus transect). Note that 14 of the 16 observed differences are positive, so the test
statistic value is

st = 14.

From a table of binomial distribution tail areas, using n = 16, the upper tail probability associated
with ST = 14 is 0.0021, and the lower tail probability is 0.9997. Thus the p-value is two times the
smaller of these,

P-value = 2(0.0021) = 0.0042.

Using a level of significance @ = 0.05, we reject the null hypothesis and conclude that the two
methods produce different results. In particular, because most of the differences are positive, the
area search method tends to produce higher density estimates than the line transect method.

9.6.4 Large Sample Version of the Sign Test for Paired Samples

The large sample version of the one-sample sign test described in Chapter 7 can be applied to the differences
from a matched pairs study to form a large sample version of the paired samples sign test. Recall from
Chapter 7 that when the null hypothesis is true and n is large (n > 30 is sufficient),

S+ ~ N(/’LSJF Us*)

(approximately) and so
St — Hst

Og+

7 = ~ N(0,1),

where the mean and standard error of the sampling distribution of S™ under the null are

n n
Bst = 5 and Tst = 47 (9.7)
It follows that when n is large, the appropriate test statistic for the paired samples sign test is the large

sample sign test statistic for paired samples, denoted Z1 and defined by the following.

Large Sample Paired Sign Test Statistic:

g+ = Skt

O+

with pug+ and o4+ given by (9.7).

When Hy : jig = 0 is true (and n is large), Z* follows (approximately) a standard normal distribution.
P-values (and critical values for the rejection region approach), therefore, are obtained from the tails of
the N(0, 1) distribution in the direction specified by the alternative hypothesis.

Comment: As mentioned in Chapter 7, most statistical software packages use a more accurate continuity
corrected version of ZT when computing p-values for the large-sample version of the sign test. Details
about the continuity correction can be found in many statistics textbooks, including [9].
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9.7 Nonparametric Confidence Interval for a Median Difference

We saw in Section 6.11 of Chapter 6 how to construct a nonparametric confidence interval for a population
median based on a single sample from the population. We can applied that procedure to the differences in
a matched pairs study to obtain a confidence interval for the true (unknown) median fi4 of the population
of differences.

We don’t require any assumptions about the population differences other than that it’s a continuous
distribution. The nonparametric paired samples confidence interval for fi4 is given by the following.

Nonparametric Paired Samples Confidence Interval for fi4: Suppose, as for the sign test for
paired samples, that X1, Xo,..., X,, and Y7, Y5,...,Y,, are samples in a matched pairs study and that
the differences D1, Do, ..., D, can be considered to be a sample from any continuous distribution.
Then for a desired level of confidence

100(1 — a)%, the nonparametric confidence interval for fiq is

((k1 + 1)th smallest difference, kath smallest difference) (9.8)
where kp is the largest value among 0,1, ...,n for which
P(D < k) < 3,
with D ~ binomial(n, 0.5), and ko is the smallest value among 0, 1, ...,n for which

P(D > k) < %

\. J

The values for k1 and ks can be determined using statistical software or obtained from a table of critical
values and tail probabilities for the binomial distribution.

Note: Using the above procedure, the actual confidence level is guaranteed to be no smaller than 100(1 —
a)%. In other words, we can be at least 100(1 — «)% confident that iy will be contained in the interval
(9.8). The actual confidence level is given by the probability that a binomial(n, 0.5) random variable will
fall between k1 + 1 and ko — 1, inclusive.

9.8 Which Test Should Be Used, the Paired t Test, Signed Rank Test,
or the Sign Test for Paired Samples?

When comparing two populations using paired data, our first choice should always be to use the paired ¢
test because it’s the most powerful. In other words, you’d be more likely to detect a difference or effect, if
there is one, using a paired t test than if you used a signed rank test or a sign test for paired samples. But
if the normality assumption for the difference population isn’t met (and n is small), and we don’t want to
transform the data, then we have no choice but to use either the signed rank test or the sign test. Of these,
the signed rank test is more powerful, so if the assumption of a symmetric difference population appears
to be met, this is the test we should use. The sign test should only be used as a last resort, that is, if the
assumptions for the other two tests aren’t met.

Generally, the more stringent the assumptions that a test requires are, the more powerful the test will
be. Tests that require more stringent assumptions, like the paired t test, use the complete information
contained in the data (that is, their actual numerical values), whereas those with relaxed assumptions,
such as the signed rank test and the sign test, only use the ranks or signs of the data values and therefore
ignore some of the information contained in the data.
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9.9

Problems

9.1 For each of the following studies, decide whether a matched pairs design or an independent samples
design was used.

2)

In 1878 Charles Darwin performed an experiment to determine if the height of a Zea mays (corn)
plant is affected by whether the plant is cross-fertilized or self-fertilized. In each of 15 pots, two
plants were grown, one self-fertilized and the other cross-fertilized, and their heights later measured.

In a study of the impact of agriculture on surface water quality, phosphorus was measured during
each of 33 rainstorm events at the outlets of two adjacent watersheds, one of which contains farms
and the other no farms.

c¢) In a study of the health hazards for workers in two types of swine confinement buildings, dried fecal

matter was measured in the air of 12 randomly selected finishing buildings, where 50 - 100 kg animals
are housed, and also in a random sample of 11 nursery buildings, which house smaller animals.

On April 7, 2000, an oil pipeline owned by the Potomac Electric Power Company ruptured, spilling
126,000 gallons of oil into marsh areas of Swanson Creek, Maryland. To assess the impact on benthic
(bottom dwelling) communities, benthos were evaluated at 10 randomly selected locations in Swanson
Creek near the spill and at 10 other randomly selected locations in the nearby, undisturbed Hunting
Creek.

e) In a study of the long-term effect on shoreline biology of effluent from an oil refinery at Littlewick

Bay, Wales, barnacle densities were measured at 10 shoreline locations near the refinery in 1974 and
again at the same 10 locations in 1981.

f) A study was carried out by the University of Toronto to assess the impact of effluent from a sewage

h)

treatment plant near Orangeville, Ontario, Canada into the Credit River. Fecal coliform was mea-
sured on each of several days 1.5 km upstream of the plant and on those same days 2.5 km downstream.

In a study of the effect of pollution on cancer rates, to control for socioeconomic factors that might be
related to cancer, researchers matched each of several communities near a source of pollution to one
that had similar socioeconomic characteristics, but was located away from the source, and compared
their cancer rates.

In a laboratory quality assurance study, ten 250 mL certified standard solutions with 100 ppm lead
were sent to a lab for analysis and ten others to a different lab.

9.2 To investigate the importance of taking into consideration local wind direction when measuring air
pollutants near traffic intersections, nitrogen dioxide (NOy) was measured (ug/m?) simultaneously upwind
and downwind of an intersection in Patras, Greece on five occasions [15]. Measurements were made at a
height of 0.8 to 1 m above ground because at these heights pollution directly impacts the health of drivers
and children due to breathing. The data are below.

NO,

Sampling o
Occasion Downwind Upwind Difference
1 126 75 51
2 103 77 26
3 90 63 27
4 75 67 8
5 75 82 -7
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The summary statistics of the differences are

D = 21
S; = 21.9.

a) Carry out a paired ¢ test to decide if the downwind NOj is statistically significantly higher than the
upwind NO;. Use a level of significance o = 0.05.

b) The estimate of the true (unknown) effect size g of traffic on NOg is D = 21 pug/m?. Compute and
interpret a 95% paired ¢ confidence interval for pg.

9.3 In an experiment to study the effect of fertilizers on soil and groundwater chemical properties, each
of five farms in the Al-Wafrah region of Kuwait was split into two plots, one of which received fertilizer
and the other of which, acting as a control, remained unfertilized [1]. The table below shows the pH levels
in soil for the five pairs of plots as well as their differences.

pH Level
Fertilized Non-fertilized
Farm Plot Plot Difference
1 7.40 7.40 0.00
2 7.46 7.61 -0.15
3 7.28 7.60 -0.32
4 7.42 7.58 -0.16
5 7.15 7.55 -0.40

Here are the summary statistics for the differences.

D = —-0.21
S; = 0.16.

We want to decide if fertilizer has any effect on the pH level, and if so, to estimate the size of that effect.
A normal probability plot of the five differences shows no indication of non-normality, so a paired t test is
appropriate.

a) Carry out the paired ¢ test to decide if fertilizer has any effect on the pH level. Use a level of
significance a = 0.05.

b) The estimate of the true (unknown) effect size pq of fertilizer on pH level is D = —0.21. Compute
and interpret a 95% paired ¢ confidence interval for pig.

9.4 One cause of stomach flu (gastroenteritis) in children is exposure to water contaminated by a virus,
the adenovirus type 40. To help prevent stomach flu, it’s important to be able to measure concentrations
of this virus in water.

An experiment was carried out to compare the results of two methods for measuring the virus in tap water,
and also to compare the results of one of the methods when used in tap water with its results when used
in sea water [7]. Both methods involve passing the water through fiberglass filters and measuring the virus
accumulations on the filters. The first uses the IMDS (electropositive) filter and the other the Filterite
(electronegative) filter.

The experiment involved propagating the virus on human liver cells and then separating out the excess
liver tissue by centrifugation. This virus propagation and liver separation process was run four times. For
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each run, virus concentrations were added to two 113 L volumes of tap water, one of which was passed
through the IMDS filter and the other the Filterite filter. Virus concentrations were also added to a 113 LL
volume of sea water which was passed through the Filterite filter.

The table below shows, for each of the four runs, the virus recovery efficiencies, defined as the percent of
total virus added to the water that collects on the filter and is able to be removed and measured.

Virus Recovery Efficiency (%)
Experimental IMDS with Filterite with Filterite with

Run Tap Water  Tap Water Sea Water
1 32.0 29.0 35.0
2 33.0 38.0 48.0
3 22.0 37.5 41.0
4 19.0 42.0 29.0

We want to decide if there’s any statistically significant difference in recovery efficiencies using IMDS and
Filterite filters with tap water, and also if there’s any difference using Filterite with tap water and with
salt water.

a) Carry out a paired ¢ test to decide if there’s any difference in the recovery efficiencies of IMDS and
Filterite with tap water. Use a level of significance o = 0.05.

b) Carry out a paired ¢ test to decide if there’s any difference in the recovery efficiencies of Filterite
with tap water and Filterite with sea water. Use a level of significance o = 0.05.

9.5 Catalytic converters are devices found on cars that convert hydrocarbons, carbon monoxide, and
nitrogen oxides, all toxic byproducts of fuel combustion, into harmless compounds. While their use has
resulted in decreased emissions of these toxic gases, it’s suspected of increasing emissions of ammonia
(NHj3), a gas which contributes to the formation of airborne particles.

A study was carried out to investigate atmospheric NHs due to automobile traffic near Rome, Italy [11].
On each of 12 days from spring 2001 to spring 2002, NH;3 concentrations (ug/m?) were measured at an
urban site in Rome and at rural site located about 20 km northeast of Rome. The table below shows the
data.

Atmospheric NHj
Date Urban Rural Difference

May 8 3.1 2.8 0.3
May 15 3.0 2.4 0.6
Jun. 26 3.7 2.9 0.8
Jul. 24 3.4 2.6 0.8
Aug. 2 3.6 3.9 -0.3
Sept. 6 3.2 3.1 0.1
Oct. 18 4.2 2.2 2.0
Nov. 13 3.4 2.1 1.3
Dec. 3 5.3 1.5 3.8
Dec. 4 4.9 1.3 3.6
Feb. 27 3.3 1.2 2.1
Mar. 12 2.9 3.0 -0.1

a) Use a normal probability plot and histogram to check the assumption of normality of the differences
required for the paired t test.
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b) Carry out the paired t test to decide if the urban NHj concentrations are statistically significantly
higher than the rural concentrations. Use a level of significance o = 0.05.

¢) Compute and interpret a 95% paired ¢ confidence interval for the true (unknown) mean difference
between urban and rural NHj3 concentrations, fg4.

9.6 Carbon monoxide (CO) and sulfur oxides (SO,) occur in the atmosphere both naturally and as a
result of human combustion of fuel. Exposure to these gases at high levels (or low levels for long periods
of time) can be detrimental to human health.

In a study of air quality in the city of San Luis, Argentina, CO and SO, were measured at 8:30 AM and
again at 12:30 PM on Monday through Friday for each of 12 weeks in 1994 [10]. These times of day were
chosen because previous studies had found them to have the highest urban activity levels.

A stratified random sample of air quality monitoring sites was used. The city was first divided into five
sectors containing about 30 blocks each. Then from each sector, seven, eight, or nine locations were ran-

domly selected giving a total of 38 sites throughout the city.

The tables below show the weekly average CO and SO, concentrations (ppm) for the two times of day.

(¢]0) SO,

Week 8:30 AM  12:30 PM Week 8:30 AM  12:30 PM
1 16.45 14.69 1 0.89 0.90
2 12.55 13.32 2 0.71 0.77
3 5.11 8.12 3 0.00 0.64
4 5.89 4.85 4 0.30 0.81
5 10.83 11.47 5 0.58 0.80
6 5.15 8.25 6 0.40 0.84
7 3.15 4.92 7 0.48 0.60
8 3.50 10.35 8 0.37 0.80
9 7.55 5.30 9 0.48 0.59
10 5.31 5.14 10 0.13 0.38
11 5.14 15.45 11 0.52 0.93
12 10.55 2.99 12 0.59 0.58

In this problem, we’ll analyze the CO data. (The SO, data will be analyzed in Problem 9.7.)

a) Compute the 12 CO concentration differences and plot them in a normal probability plot. Based on
the plot, does the normality assumption required for the paired ¢ test appear to be met?

b) Carry out a paired ¢ test to decide if there’s any statistically significant difference between CO
concentrations at 8:30 AM and 12:30 PM. Use a level of significance oo = 0.05.

¢) Compute and interpret a 95% paired t confidence interval for the true (unknown) mean difference
between 8:30 AM and 12:30 PM CO concentrations, .

9.7 Refer to the study comparing 8:30 AM and 12:30 PM concentrations of carbon monoxide (CO) and
sulfur oxides (SO;) in San Luis, Argentina described in Problem 9.6.

a) Compute the 12 SO, concentration differences and plot them in a normal probability plot. Based on
the plot, does the normality assumption required for the paired ¢ test appear to be met?

b) Carry out a paired ¢ test to decide if there’s any statistically significant difference between SO,
concentrations at 8:30 AM and 12:30 PM. Use a level of significance oo = 0.05.
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c) Compute and interpret a 95% paired ¢ confidence interval for the true (unknown) mean difference
between 8:30 AM and 12:30 PM SO, concentrations, pg.

9.8 In the quality assurance study described in Example 9.12, the researchers also investigated whether
holding air samples for extended periods of time would affect lab measurements of gaseous mercury (Hg).

A pair of air specimens was obtained on each of 12 sampling occasions. One specimen in each pair was
held for 4 hours and the other for 120 hours hours before being analyzed in the lab for gaseous Hg. The
table below shows the data (pg/m?).

Gaseous Mercury

Sampling Short Long

Occasion  Holding Time Holding Time Difference
1 5.46 7.80 -2.34
2 8.49 9.28 -0.79
3 3.57 2.73 0.84
4 5.35 4.47 0.88
5 6.32 4.73 1.59
6 3.13 5.22 -2.09
7 5.49 4.95 0.54
8 5.05 10.54 -5.49
9 1.93 2.48 -0.55
10 3.48 241 1.07
11 1.10 1.14 -0.04
12 1.22 1.65 -0.43

Carry out a signed rank test for paired samples to decide if holding time has any effect on the Hg mea-
surements. Use a level of significance o = 0.05.

9.9 A study was carried out to investigate the effectiveness of routine cleaning on reducing bacteria levels
in a hospital [8]. For each of several surfaces in the hospital, the failure rate before and after cleaning
was recorded. The failure rate is defined as the percentage of times that the bacteria level fails to meet
standard specifications when tested.

The table below shows the failure rates (percent) before and after cleaning for ten surfaces in the bedroom
and treatment room of one of the hospital’s wards. Also shown are the differences.

Failure Rate (%)

Surface Before Cleaning After Cleaning Difference
Worktop 90 93 3
Treatment Room Tap Handle 60 64 4
Treatment Trolley 80 86 6
Door Handle 60 43 -17
Fridge Handle 70 57 -13
Treatment Room Bin Lid 80 50 -30
Ward 4 Bed Tap Handle 90 86 -4
Sink 90 78 -12
Bed Rail 80 71 -9
Ward 4 Bed Bin Lid 70 64 -6

Carry out a signed rank test for paired samples to decide whether the routine cleaning reduces the failure
rate. Use a level of significance level o = 0.05.
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9.10 A benefit of social living among animals of a given species is the potential for acquiring information
from each other about the location of food or predators. One source of such information is the direction
of the other’s gaze, and several mammal species have been shown to be able to follow gaze direction.

In an experiment to determine if ravens are able to follow the gaze directions of others, six ravens were
examined under each of two experimental conditions defined according to the direction of a human ex-
perimenter’s gaze [3]. During the treatment condition, the raven was placed beside a barrier and the
experimenter looked behind it in an attempt to get the raven to look there too. During the control condi-
tion, the experimenter gazed at a location on raven’s side of the barrier.

Each raven was examined five times under each condition, and for each condition, the researchers counted
how many times the raven looked around the barrier. Thus the maximum possible was five. The data are
shown below.

Number of Raven Look-Arounds
Treatment Control
Raven Condition Condition Difference

1 3 0 3
2 1 0 1
3 2 1 1
4 4 1 3
5 2 0 2
6 2 2 0

Carry out a signed rank test to decide if there’s statistically significant evidence that the ravens look around
the barrier more often when the experimenter does. Use a level of significance o = 0.05.

(Note that the signed rank test is often used with discrete data, and in fact it’s the test used by the
researchers in this study.)

9.11 In 1974 the Bellevue-Stratford Hotel in Philadelphia was the scene of an outbreak of what later
became known as Legionnaire’s disease. The cause of the disease was finally discovered to be bacteria that
thrived on the air conditioning units of the hotel. Owners of the nearby Rip Van Winkle Motel, hearing of
the problems at Bellevue-Stratford, immediately replaced their air-conditioning system. Before replacing
it, though, the bacteria count was measured in each room. After the system was replaced the bacteria
counts were measured again.

The table below shows the bacteria counts (in colonies per cubic foot of air) in the air of eight rooms
before and after the new air conditioning system was installed. Also shown are the eight differences (after
replacing the system minus before).

Bacteria Count

Room Number Before After Difference
121 11.8 10.1 -1.7
163 8.2 7.2 -1.0
125 7.1 3.8 -3.3
264 14.0 12 -2.0
233 10.8 8.3 -2.5
218 10.1 10.5 0.4
324 14.6 12.1 -2.5

325 14.0 13.7 -0.3
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A negative difference means the bacteria count decreased in that room. The hope was that replacing the
air conditioning system would reduce the bacteria counts.

Carry a signed rank test to decide if there was a statistically significant reduction in bacteria counts. Use
a level of significance oo = 0.05.

9.12 Groundwater is a significant source of drinking water in the San Joaquin Valley, California. But
extensive use of fertilizers and pesticides for farming and the generally permeable soils in the region have
resulted in problems with groundwater contamination by nitrates and pesticides.

Many studies of groundwater quality make use of water samples from domestic wells (wells that supply
water for use in individual homes) rather than monitoring wells (non-pumping wells used specifically for
drawing water quality samples). But nitrate and pesticide concentrations might be lower in domestic wells
than in monitoring wells, in part because domestic wells are typically deeper than monitoring wells.

A study was carried out to determine if the type of well can affect water quality [5]. Fourteen domestic
wells were randomly selected from within the region, and two monitoring wells were installed adjacent to
each domestic well, one at the same depth as the domestic well and the other at a shallower depth (less
than 20 ft below the groundwater table). Nitrate (mg/L) and various pesticide (ug/L) concentrations were
then measured in each well.

The table below shows the nitrate concentrations for domestic and shallow monitoring wells. (The deep
monitoring well data will be analyzed in Problems 9.13 and 9.14.). Also shown are the differences.

Nitrate Concentration
Site  Domestic Well ~ Shallow Monitoring Well  Difference

1 2.00 2.40 -0.4
2 0.70 8.20 -7.5
3 9.80 20.00 -10.2
4 6.10 5.40 0.7
) 11.00 7.00 4.0
6 20.00 17.00 3.0
7 10.00 14.00 -4.0
3 9.90 53.00 -43.1
9 2.90 4.30 -1.4
10 29.00 33.00 -4.0
11 4.00 18.00 -14.0
12 14.00 18.00 -4.0
13 4.80 5.30 -0.5
14 1.40 1.20 0.2

The researchers suspected, prior to looking at the data, that domestic wells would have lower nitrate
concentrations than shallow monitoring wells. Thus a one-sided test is appropriate. The cited report
states that because the normality assumption for the differences isn’t met (and the sample size is small), a
paired ¢ test isn’t appropriate. A normal probability plot and histogram of the differences, shown below,
appear to confirm this contention.

Instead, to decide if domestic wells have lower nitrate concentrations, the researchers carried out a sign
test for paired samples.

Carry out the sign test for paired samples. Use a level of significance o« = 0.05.
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9.13 Refer to the study to decide if the type of well affects water quality in the San Joaquin Valley,
described in Problem 9.12.

The table below shows the nitrate concentrations for shallow and deep monitoring wells. Also shown are
the differences.

Nitrate Concentration
Site  Shallow Monitoring Well Deep Monitoring Well —Difference

1 2.40 0.24 2.16
2 8.20 0.32 7.88
3 20.00 22.00 -2.00
4 5.40 5.90 -0.50
5 7.00 9.40 -2.40
6 17.00 9.10 7.90
7 14.00 7.10 6.90
8 53.00 4.80 48.20
9 4.30 3.00 1.30
10 33.00 24.00 9.00
11 18.00 4.20 13.80
12 18.00 6.20 11.80
13 5.30 4.20 1.10
14 1.20 0.19 1.01

The researchers suspected, prior to looking at the data, that shallow wells would have higher nitrate
concentrations than deep wells. Thus a one-sided test is appropriate. The cited report states that because
the normality assumption for the differences isn’t met (and the sample size is small), a paired ¢ test isn’t
appropriate. A normal probability plot and histogram of the differences, shown below, reveal an outlier
that appears to confirm this contention.

Normal Probability Plot of Differences Histogram of Differences
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Instead, to decide if shallow wells have higher nitrate concentrations, the researchers carried out a sign test
for paired samples.

Carry out the sign test for paired samples. Use a level of significance o = 0.05.

9.14 Refer to the study to decide if the type of well affects water quality in the San Joaquin Valley,
described in Problem 9.12.

The table below shows the nitrate concentrations for domestic and deep monitoring wells. Also shown are
the differences.

Nitrate Concentration
Site  Domestic Well Deep Monitoring Well — Difference

1 2.00 0.24 1.76
2 0.70 0.32 0.38
3 9.80 22.00 -12.20
4 6.10 5.90 0.20
5 11.00 9.40 1.60
6 20.00 9.10 10.90
7 10.00 7.10 2.90
8 9.90 4.80 5.10
9 2.90 3.00 -0.10
10 29.00 24.00 5.00
11 4.00 4.20 -0.20
12 14.00 6.20 7.80
13 4.80 4.20 0.60
14 1.40 0.19 1.21

Because the domestic and monitoring wells are the same depth, the researchers had no reason to suspect,
prior to looking at the data, which type of well, if any, would have higher nitrate concentrations. Thus
a two-sided test is appropriate. The cited report states that because the normality assumption for the
differences isn’t met (and the sample size is small), a paired ¢ test isn’t appropriate. A normal probability
plot and histogram of the differences, shown below, reveal an outlier that appears to confirm this contention.
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Instead, to decide if there’s any difference between the nitrate concentrations in domestic and deep moni-
toring wells, the researchers carried out a sign test for paired samples.

Carry out the sign test for paired samples. Use a level of significance o« = 0.05.

9.15 Amendments to the Clean Air Act were enacted in 1990 by the U.S. Congress in part to reduce
atmospheric acid deposition, which consists mainly of sulfuric and nitric acids derived from the burning of
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coal and oil. Since then, numerous studies have been carried out to assess the effects of the amendments.
Some have found evidence for a reduction in acid deposition, while others have not.

In one study, chemical and biological variables related to acid deposition were measured at 11 sites along
streams in the Catskill Mountains, northeastern United States, in 1987 and then again at the same 11 sites
in 2003 [4]. Among the variables measured were acidity (pH) and inorganic monomeric aluminum (Al,,).
Inorganic monomeric aluminum is used as an indicator of acidity. It’s more soluble in acidic streams, so
its concentration is inversely related to pH (as pH increases, Al decreases). Increased Al concentrations
can Kkill fish, so one potential consequence of atmospheric acid deposition is increased fish deaths.

The table below shows the of pH levels and Al,, concentrations (mmol/L) for the two years. Also shown
are the differences (2003 minus 1987).

pH Al

Site 1987 2003 Difference Site 1987 2003 Difference
NE-01 4.96 4.65 -0.31 NE-01 4.9 4.4 -0.5
NE-05 5.09 4.63 -0.46 NE-05 4.9 4.3 -0.6
NE-07 5.51 4.74 -0.77 NE-07 3.3 3.5 0.2
NE-10 5.67 5.19 -0.48 NE-10 1.3 1.7 0.4
NE-11 5.82  5.66 -0.16 NE-11 0.7 1.0 0.3
NW-01 487 4.78 -0.09 NW-01 8.2 5.9 -2.3
NW-06 5.96 6.23 0.27 NW-06 0.8 0.7 -0.1
NW-04 6.06 6.34 0.28 NW-04 0.7 0.7 0.0
NW-08 6.24 6.38 0.14 NW-08 0.5 0.7 0.2
NW-11  6.57 6.62 0.05 NW-11 0.4 0.8 0.4
N-12 6.22 6.49 0.27 N-12 0.4 0.7 0.3

Normal probability plots of the differences for these two variables are below.

Normal Probability Plot of pH Differences Normal Probability Plot of AllM Differences

0.5

-0.5 0.0
L

Sample Value
Sample Value
10

T
15 -15 -10 -05 00 05 10 15

Theoretical Z Value

a) Which test, the paired t test, signed rank test, or sign test, would be most appropriate for deciding
if the pH increased between 1987 and 20037

b) Carry out the test you chose in part a. Use a level of significance a = 0.05.

c) Which test, the paired ¢ test, signed rank test, or sign test, would be most appropriate for deciding
if Al,, concentrations decreased between 1987 and 20037

d) Carry out the test you chose in part c. Use a level of significance o = 0.05.

9.16 Here are the data (also shown in Example 9.4) from the study of the effect of a forest clear-cutting
operation on a nearby stream’s water quality, where nitrate concentrations (mg/L) were measured on each
of 11 days upstream and downstream of the clear-cutting operation shortly after it was completed.
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Nitrate Concentration

Date Upstream Downstream Difference
08/15/97 1147.4 995.3 152.1
08/18/97 1412.2 1303.6 108.6
08/31/97 1613.9 1923.3 -309.4
09/18/97 763.3 747.8 15.5
11/04/97 1031.4 1082.9 -51.5
11/07/97 1093.2 1938.7 -845.5
02/27/98 390.8 338.8 52.0
07/14/98 909.8 776.8 133.0
08/25/98 1033.0 676.8 356.2
09/30/98 897.5 1291.0 -393.5
10/29/98 2314.0 1232.9 1081.1

We want to decide if there’s any statistically significant difference in upstream and downstream nitrate
concentrations. A normal probability plot and histogram of the differences are shown below.

Normal Probability Plot of Differences Histogram of Differences
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a) Which test, the paired t test, signed rank test, or sign test, would be most appropriate for deciding
if there’s any difference between upstream and downstream nitrate concentrations?

b) Carry out the test you chose in part a. Use a level of significance a = 0.05.

9.17 In the study of the effect of a forest clear-cutting operation on a stream’s water quality described
in Example 9.4 and Problem 9.16, suspended solids were measured on each of 16 days upstream and
downstream of the clear-cutting operation shortly after logging was completed. The table below shows the
suspended solids concentrations (mg/L) and their differences.
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Suspended Solids

Date Upstream Downstream Difference
06/03/98 8.40 12.96 -4.56
06/09/98 3.24 2.40 0.84
06/15/98 4.30 4.24 0.06
06/22/98 1.96 1.94 0.02
06/29/98 3.72 4.30 -0.58
07/09/98 1.34 0.74 0.60
07/15/98 1.72 1.72 0.00
07/23/98 9.36 11.28 -1.92
07/31/98 21.06 8.08 12.98
08/17/98 0.88 1.38 -0.50
09/15/98 2.38 2.38 0.00
10/08/98 1.08 1.24 -0.16
11/11/98 4.40 3.60 0.80
11/26/98 3.64 3.72 -0.08
04/12/99 23.26 20.52 2.74
04/29/99 1.00 1.40 -0.40

We want to decide if there’s any statistically significant difference in upstream and downstream suspended
solids concentrations. A normal probability plot and histogram of the differences are shown below.

Normal Probability Plot of Differences Histogram of Differences
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a) Which test, the paired t test, signed rank test, or sign test, would be most appropriate for deciding
if there’s any difference between upstream and downstream suspended solids concentrations?

b) Carry out the test you chose in part a. Use a level of significance a = 0.05.

9.18 Because coral communities normally grow slowly and live long, detecting changes in their structures,
unless the result of a sudden catastrophic event, requires long-term studies. One such study was carried out
at a site in Honolua Bay on Maui, Hawaii, to identify long-term changes in coral communities associated
with an adjacent resort, golf course, and nearby pineapple agriculture [6].

Eight 50 m long transects were selected from within the bay in 1990. A 1x0.66 m rectangular quadrat
frame was placed at 10 randomly selected positions along each transect and a photograph taken of the reef
area enclosed by the frame. For each photograph, the percent coral cover was determined by overlaying
the photograph with a grid dividing the rectangle into 100 equal-sized sections and counting the number
of sections for which coral was present. These were then averaged for each transect. The coral cover was
recorded again in July, 2002 along the same eight transects. The table below shows the data and the
differences.
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Coral Cover (%)
Transect 1990 2002 Difference

1 384 494 11.0
2 70T 234 -54.3
3 39.7 442 4.5
4 88.7  60.2 -28.5
5 78.8 19.0 -59.8
6 90.8 61.6 -29.2
7 63.0 41.8 -21.2
8 86.3 48.2 -38.1

We want to carry out a test to decide if there was any statistically significant change in the percent coral
cover between 1990 and 2002. A normal probability plot and histogram of the differences are shown below.

Normal Probability Plot of Differences Histogram of Differences
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a) Which test, the paired t test, signed rank test, or sign test, would be most appropriate for deciding
if there was any change in the percent coral cover between 1990 and 20027

b) Carry out the test you chose in part a. Use a level of significance a = 0.05.

9.19 In the study to identify long-term changes in coral communities associated with an adjacent resort,
golf course, and pineapple agriculture at a site in Honolua Bay described in Problem 9.18, a measure of
coral species diversity known as Pielou’s index was calculated along each of the eight transects in 1990 and
again on the same eight transects in 2002. Larger values of Pielou’s index indicate more diversity. The
data are below.

Diversity Index
Transect 1990 2002 Difference

1 1.73  1.35 -0.38
2 1.563 1.43 -0.10
3 1.85 1.50 -0.35
4 1.25  1.33 0.08
5 1.55 1.57 0.02
6 1.34 1.31 -0.03
7 1.48  0.68 -0.80
8 1.49 0.59 -0.90

We want to carry out a test to decide if there was any statistically significant change in the coral species
diversity between 1990 and 2002. A normal probability plot and histogram of the differences are shown
below.
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Normal Probability Plot of Differences Histogram of Differences
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a) Which test, the paired t test, signed rank test, or sign test, would be most appropriate for deciding
if there was any change in the coral species diversity between 1990 and 20027

b) Carry out the test you chose in part a. Use a level of significance a = 0.05.
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